Part Number Hot Search : 
100000 ADCMP350 CD4013BC 15530 MP1469 24FJ64G LSBWR25K MSD700
Product Description
Full Text Search
 

To Download CPV363M4K Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD-5.043A
CPV363M4K
IGBT SIP MODULE
Features
* Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10s @ 125C, VGE = 15V * Fully isolated printed circuit board mount package * Switching-loss rating includes all "tail" losses * HEXFREDTM soft ultrafast diodes * Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
3 Q1 D1 9 4 6 Q2 D2 12 Q4 D4 18 Q3
Short Circuit Rated UltraFast IGBT
1
D3 15 10
Q5
D5 16
Q6
D6
7
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive 6.7 ARMS per phase (1.94 kW total) with TC = 90C, TJ = 125C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.
IMS-2 Max. Units
V
Absolute Maximum Ratings
Parameter
VCES I C @ TC = 25C I C @ TC = 100C ICM ILM I F @ TC = 100C IFM t sc VGE VISOL PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. 600 11 6.0 22 22 6.1 22 10 20 2500 36 14 -40 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf*in (0.55 - 0.8 N*m)
A
s V VRMS W
C
Thermal Resistance
Parameter
RJC (IGBT) RJC(DIODE) RCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module
Typ.
--- --- 0.1 20 (0.7)
Max.
3.5 5.5 --- ---
Units
C/W g (oz)
2/24/98
CPV363M4K
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 --- --- V VGE = 0V, IC = 250A V(BR)CES/T J Temp. Coeff. of Breakdown Voltage --- 0.45 --- V/C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage --- 1.72 2.10 IC = 6.0A VGE = 15V VCE(on) See Fig. 2, 5 --- 2.00 --- V IC = 11A --- 1.60 --- IC = 6.0A, TJ = 150C Gate Threshold Voltage 3.0 --- 6.0 VCE = VGE, IC = 250A VGE(th) --- -13 --- mV/C VCE = VGE, IC = 250A VGE(th) /TJ Temp. Coeff. of Threshold Voltage Forward Transconductance 3.0 6.0 --- S VCE = 100V, IC = 12A gfe Zero Gate Voltage Collector Current --- --- 250 A VGE = 0V, VCE = 600V ICES --- --- 2500 VGE = 0V, VCE = 600V, TJ = 150C Diode Forward Voltage Drop --- 1.4 1.7 V IC = 12A See Fig. 13 V FM --- 1.3 1.6 IC = 12A, TJ = 150C Gate-to-Emitter Leakage Current --- --- 100 nA VGE = 20V IGES V(BR)CES
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets Cies Coes Cres t rr Irr Q rr d i(rec)M / dt Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. --- --- --- --- --- --- --- --- --- --- 10 Typ. 61 7.4 27 55 24 107 92 0.28 0.10 0.39 --- Max. Units Conditions 91 IC = 6A 11 nC VCC = 400V 40 See Fig. 8 --- TJ = 25C --- ns IC = 6.0A, VCC = 480V 160 VGE = 15V, RG = 23 140 Energy losses include "tail" and --- diode reverse recovery. --- mJ See Fig. 9, 10, 18 0.50 --- s VCC = 360V, TJ = 125C VGE = 15V, RG = 23, VCPK < 500V --- TJ = 150C, See Fig.10, 11, 18 --- ns IC = 6.0A, VCC = 480V --- VGE = 15V, RG = 23 --- Energy losses include "tail" and --- mJ diode reverse recovery. --- VGE = 0V --- pF VCC = 30V See Fig. 7 --- = 1.0MHz 60 ns TJ = 25C See Fig. 120 TJ = 125C 14 IF = 12A 6.0 A TJ = 25C See Fig. 15 VR = 200V 10 TJ = 125C 180 nC TJ = 25C See Fig. 600 TJ = 125C 16 di/dt=200A/s --- A/s TJ = 25C See Fig. --- TJ = 125C 17
--- 54 --- 24 --- 161 --- 244 --- 0.60 --- 740 --- 100 --- 9.3 --- 42 --- 80 --- 3.5 --- 5.6 --- 80 --- 220 --- 180 --- 120
Repetitive rating; VGE=20V, pulse width limited
by max. junction temperature. ( See fig. 20)
VCC =80%(VCES), VGE =20V, L=10H,
RG= 23, ( See fig. 19 ) Pulse width 80s; duty factor 0.1%.
Pulse width 5.0s,
single shot.
CPV363M4K
12 3.50
10
8
2.33
6
1.75
4
1.17
2
0.58
0 0.1 1 10
0.00 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C, Collector-to-Emitter Current (A)
TJ = 150 oC
10
I C, Collector-to-Emitter Current (A)
TJ = 25 oC
TJ = 150 oC
10
TJ = 25 oC
1
1
0.1 1
V GE = 15V 20s PULSE WIDTH
10
0.1 5 10
VCC = 50V 5s PULSE WIDTH
15
V CE, Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
Total Output Power (kW)
T c = 9 0 C T j = 1 25 C P ow er F ac tor = 0 .8 M o d ula tio n D ep th = 1 .15 V c c = 50 % o f R a ted V o lta g e
2.92
LOAD CURRENT (A)
CPV363M4K
12
M axim um D C C o llec tor C urr ent ( A )
V GE = 1 5 V VCE , Collector-to-Emitter Voltage(V)
3.0
VGE = 15V 80 us PULSE WIDTH IC = 12A
9
6
2.0
IC = IC =
6A 3A
3
0 25 50 75 100 125
A
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
T C , C ase T em pera ture ( C )
T J , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
T herm al R espo nse (Z thJC )
D = 0.50
1
0.20 0.10 0.05
PD M
0 .1
0.02 0.01 SINGLE PULSE ( THE RMAL RES PO NSE)
Note s: 1. Du ty fac tor D = t 1 /t 2
t
1 t2
0.01 0.0000 1
2. Pe ak TJ = P D M x Z th JC + T C
0.0001
0.001
0.0 1
0.1
1
10
t 1 , R e ct an gu la r P ulse D ura tion (s ec )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
CPV363M4K
1500
1200
VGE, Gate-to-Emitter Voltage (V)
100
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 6.0A
16
C, Capacitance (pF)
900
Cies
12
600
8
300
Coes Cres
4
0 1 10
0 0 20 40 60 80
VCE , Collector-to-Emitter Voltage (V)
Q G, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.0
V CC = 480V V GE = 15V TJ = 25 C 0.8 I C = 6.0A
10
RG =10 23Ohm VGE = 15V VCC = 480V
Total Switching Losses (mJ)
0.6
Total Switching Losses (mJ)
I C = 12A
1
0.4
IC =
A 6
0.2
IC =
A 3
0.0 0 10 20 30 40 50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG G , GateResistance (Ohm) R , Gate Resistance ( )
T J, Junction Temperature ( ) C
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
CPV363M4K
1.5
0.9
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
RG = 23Ohm T J = 150 C 480V VCC = 0V 1.2 VGE = 15V
10
100
VG E = 2 0 V T J = 12 5 C
S AF E O P ER A TIN G AR EA
10
0.6
0.3
0.0 0 3 6 9 12 15
1 1 10 100
A
1000
I C , Collector-to-emitter Current (A)
VC E , C ollector-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous F orward C urrent - I F (A)
TJ = 1 50C
10
TJ = 1 25C TJ = 25C
1 0.4 0.8 1.2 1.6 2.0 2.4
F orward V oltage D rop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
CPV363M4K
160 100
VR = 2 0 0 V TJ = 1 2 5 C T J = 2 5 C
120
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
I F = 24A I F = 12 A
80
I IR RM - (A )
t rr - (n s)
I F = 24 A
10
I F = 12 A IF = 6 .0A
I F = 6.0 A
40
0 100
di f /d t - (A / s)
1000
1 100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
600
Fig. 15 - Typical Recovery Current vs. dif /dt
10000
di f /d t - (A /s)
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
VR = 2 0 0 V TJ = 1 2 5 C TJ = 2 5 C
di(rec) M/ dt - (A / s)
400
1000
Q RR - (nC )
IF = 6 .0 A
I F = 24 A I F = 12A
IF = 12 A
100
200
I F = 24 A IF = 6.0A
0 100
di f /d t - (A /s)
1000
10 100
1000
di f /dt - (A / s)
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M /dt vs. dif /dt
CPV363M4K
Same t ype device as D.U.T. 9 0% V ge + Vg e
Vce 80% of Vce 430F D.U.T. Ic 1 0% V ce Ic 5% Ic td (off) tf 90 % Ic
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
E off =
t1 +5 S
VceicIc tdt V ce d
t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T. 1 0% +V g +V g
trr Ic
Q rr =
trr id dt Ic dt tx
tx 10% V cc V ce Vcc 10% Ic 9 0% Ic DUT V O LTA G E AN D C URR E NT Ipk Ic
10 % Ir r V cc
V pk Irr
td( on)
tr
5% Vc e t2 Vce dt E on = V c e ieIc dt t1 t2 DIO D E RE V E RS E RE C O V ER Y EN ER G Y t3
DIO DE RE CO V E RY W AV E FO RM S
Er ec =
t4 V d idIc t dt Vd d t3
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
CPV363M4K
V g G ATE S IG N AL DE VICE UNDE R TE S T CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 10 00V 50V 60 00 F 100 V V c*
D.U.T.
RL = 0 - 480V
480V 4 X I C @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
CPV363M4K
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG = 10 (Figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
Case Outline IMS-2
62.43 (2.458) 3.91 ( .154) 2X 53.85 ( 2.120)
7.87 (.310) 5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S: 1. Tolerance unless otherwis e spec ified 0.254 (.010) . 2. Controlling D imension: Inch. 3. Dimens ions ar e shown in Millimeter ( Inc hes) . 4. Term inal numbers are shown for refer enc e only.
3.94 (.155) 1.27 ( .050) 3.05 0.38 (.120 .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240)
4.06 0.51 (.160 .020) 5.08 (.200) 6X
1.27 (.050) 13X 2.54 (.100) 6X
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 2/98


▲Up To Search▲   

 
Price & Availability of CPV363M4K

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X